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Aluminosilicate zeolites represent an important class
of molecular sieves. Their unique structures, consisting
of frameworks containing periodic and molecular-sized
pores and channels, impart on these materials shape
and size selective acid catalytic properties.1,2 These
properties can be further modified by substitution of
framework aluminum and/or silicon by other tetrahe-
dral atoms such as Ga and Ge. The substitution of Al
by Ga is common and has been proposed, for example,
as a means to control pore dimension3,4 and increase
para-selectivities for the alkylation of ethylbenzene5 and
for other gallium-promoted catalysis6 such as the con-
version of n-hexane.7 The modification of existing alu-
minosilicate frameworks, or the complete substi-
tution of Al with Ga in known aluminosilicate frame-
works, is widely reported.8 There are however few
reports of microporous materials unique to gallosilicate
chemistry.

A novel gallosilicate framework was reported by
Krutskaya et al. while studying the phase diagrams of
the K2O-Ga2O3-SiO2-H2O system at 200 °C.9,10 This
material apparently had no aluminosilicate analogue
and was named TsG-1. Although the cell parameters
and the water sorption properties of this material were
described, the structure of TsG-1 was not reported. We
report here the structure of microporous TsG-1.

TsG-1 was synthesized in the K2O-Ga2O3-SiO2-
H2O-NH4F system. A mixture of 0.625 g of Ga2O3 (3.33
mmol), 2.992 g of KOH (46.6 mmol), and 6.4 mL of H2O
was heated at 110 °C for 16 h in a polypropylene bottle
and cooled to room temperature. The solution was added
to 5 g of colloidal silica (40% SiO2) and 0.126 g of NH4F
(3.33 mmol) as a mineralizing agent, and after stirring
for 24 h, the resulting clear solution was transferred
into a Teflon-lined vessel and heated at 150 °C for 5
days. The Si/Ga ratio of the original gel could be varied
between 2.5 and 5.0 to produce the same material.

The structure of TsG-1 was determined from single-
crystal X-ray diffraction data.11 Following its solution,
it became clear that the structure of TsG-1 is related to
the CGS framework12 and possesses the ideal topological
symmetry, Pnma. This contrasts with the cobalt-
gallium phosphate analogue12 which exhibits an alter-
nation of MO4 (M ) Co, Ga) and PO4 tetrahedra
throughout the framework12 and has P21/c symmetry.
For the TsG-1 framework, however, it was found that
Ga and Si atoms are disordered throughout the tetra-
hedral sites with the idealized Ga-to-Si ratio of 1 to 2.2.
To confirm the correct cell, monoclinic symmetry was
tested during the data integration by varying the unique
axis choice, which resulted in either statistically equiva-
lent or poorer agreements between symmetry equivalent
reflections, compared with the orthorhombic cell choice.11

Ab Initio indexing of the powder diffraction pattern of
TsG-1 was also consistent with the choice of ortho-
rhombic symmetry, in agreement with the single crystal
study (Figure 1).13

TsG-1 has an interpenetrated double 6-ring building
unit (4106382) (Figure 2), which is unique to the CGS
framework.12 This building unit is closely related to the
double 6-ring of group 4 zeolites14 such as CHA, GME,
FAU, ZK-5, and AEI, but has not been observed in
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incident beam intensity was normalized on the basis of the counts from
a beam monitor. The intensities were integrated and merged using
SAINT19 and SORTAV20 programs, respectively. During the integra-
tion, the orientation matrix was optimized every 50 frames. LP factor
corrections were made, and absorption corrections were applied using
SADABS.21 By rejecting outliers (7.8% of the total 18307 reflections),
a Rint of 5.75% was obtained based on 16 888 reflections, which
represented 4.3 overall average measurement multiplicity. Attempts
to integrate with a monoclinic cell gave Rint of 6.26%, 6.34%, and 6.12%
for the unique axis choices of a, b, and c axis, respectively. The space
group was determined from examination of the systematic absences.
The structure was determined and refined using the SHELXTL
program.22 Refinement was based on full-matrix least-squares tech-
niques on F2, and standard discrepancy indexes for the final model
were R1 ) 0.0501, wR2 ) 0.1353, and GOF ) 1.076 with 2560 reflections
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temperature factors were used. Water molecules were also refined
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another 4-connected net. By replacing one of the 4-ring
walls of the double 6-ring with another 6-ring, a
modified scoop-shaped building unit is generated, which
is composed of a pair of intergrown 6-rings, a buckled
8-ring, and five 4-ring walls (456281) (Figure 2). These
scoop-shaped building units are connected to each other
by sharing the intergrown 6-rings, resulting in a sinu-
soidal array of the interpenetrated double 6-rings
(Figure 2), as is observed in the CGS framework.12 A
3D framework is constructed by connecting the sinu-
soidal arrays of the interpenetrated double 6-rings via
4-rings to form channels of s-shaped 10-rings and
elliptical 8-rings along the [100] and [010] directions,
respectively (Figure 3), following the CGS topology.12

These channels intersect each other to form three-

dimensional networks of cavities with the s-shaped 10-
ring and elliptical 8-ring openings.

Unlike the cobalt-gallium phosphate analogue,12

where template cations are disordered at the pore
intersections, extraframework cations and water mol-
ecules are found along the intracrystalline channels and
cavities of TsG-1. The buckled 8-ring site is fully
occupied by potassium ions with coordination distances
to framework oxygens in the range of 2.732(7) - 3.226(6)
Å (Figure 2). Three partially occupied potassium sites,
two of which split by 0.79(2) Å, were found at the
pockets of the s-shaped 10-ring (coordination distances
to the framework oxygens in the range of 2.78(2)-
3.21(2) Å). Two other split sites partially occupied by
potassium ions were found along the 2-fold axis of the
elliptical 8-ring, separated from each other by 0.67(2)-
1.00(1) Å. These cations coordinate to the framework
oxygens at distances ranging from 2.65(2) to 3.26(1) Å.
The coordinations of potassium ions in these less-
symmetric ring environments are analogous with previ-
ous observations. For example, potassiums exhibited a
site preference of the puckered 8-ring, while larger
cesium ions were found at the flat 8-ring site in the γ
cage of ZK-5.15 The water molecules in hydrated TsG-1
partially populate four different sites bound to the
potassium ions along the s-shaped 10-ring channels with
K-H2O distances in the range of 2.54(6)-3.23(4) Å.

The thermal stability and dehydration characteristics
of TsG-1 were investigated using an in situ synchrotron
X-ray powder diffraction technique.16-18 Preliminary
results indicate a rapid contraction along the b-axis
during the initial dehydration ramp to 100 °C. Crystal-
linity is preserved throughout the course of the entire
thermal ramp to 600 °C, and no intermediate phases
are formed, consistent with the results from Krutskaya
et al.9,10

The open structure of TsG-1 suggests its potential for
ion exchange. Preliminary results show that Na+, Rb+,
Cs+, Sr2+, and NH3

+ ions can all exchange K+ ions
successfully without framework collapse. Studies are
underway to detail ion exchange isotherms and ion
selectivities.
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Figure 1. Observed (bottom) and calculated (top) X-ray
powder diffraction patterns for TsG-1. Data collection was
performed on a Scintag PAD-X automated diffractometer using
Cu KR radiation. All the reflections can be indexed, some of
which are marked with their indices, without any crystalline
impurities (background from the sample holder).

Figure 2. A skeletal representation of the sinusoidal array
of the interpenetrated double 6-rings generated by sharing the
intergrown 6-rings. Nodes represent the centers of Si/Ga
tetrahedra and straight line sections represent the T-O-T
linkages (T ) Si/Ga). Potassium ions are illustrated as circles
at the buckled 8-ring openings. Other potassium positions and
waters are omitted for clarity. Some of the buckled 8-rings and
intergrown 6-rings are emphasized with bold lines.
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Figure 3. (a) A ball-and-stick model view down (100) of a unit cell of TsG-1 (K10Ga10Si22O64‚5H2O). Black circles represent the
centers of Si/Ga tetrahedra and hollow circles represent the bridging oxygen atoms. Potassium ions and water molecules are not
shown for clarity. Dashed lines define a unit cell. A 10-ring channel is emphasized with bold lines. The size of the 10-ring (11.15
× 6.02 Å) was determined from O9-O9 and O2-O4 distances. (b) a ball-and-stick model view down (010) of a unit cell of TsG-1.
An 8-ring channel is emphasized with bold lines. The size of the 8-ring (8.88 × 5.34 Å) was determined from O3-O3 and O8-O8
distances. (c) A ball-and-stick model view down (001) of a unit cell of TsG-1. A pair of intergrown 6-rings of TsG-1 is emphasized
with bold lines.
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